ECE 4175 REVISED
Project Four 1-24-06
Positioning System

Complete by: References:
Wednesday February 1% for an A+ Chapter 10 ADC
Handout Keypad/resistor schematic

Section 2.5 Reading from program mem.
KeyCodes.inc File to help interpret keypad
Section 2.5 Indirect addressing

Figure 7-12 ASCII table

Overview

Your code from Project Three should continue to work with the addition of the entry of the
number of steps to be taken using a keypad. (The rate at which the steps are taken continues to
be the rate you entered for Project Three.)

New Variables

For this project you will need to define:

NUML ;Low byte of entered number
NUMH ;High byte of entered number
NUMSTPSL ;Low byte of NUMSTPS, the number of steps to take
NUMSTPSH ;High byte of NUMSTPS
KEYSTRG:4 ;A four-byte string to hold digit keycodes entered in succession
FLAGS :The bits of FLAGS are used as state bits

KeyCodes.inc File

This file, available from the piclab website, will be used to convert the ADC output read by the
ReadKeypad subroutine to that key’s ASCII coding. When you are ready to assemble your
P3.asm file, put the KeyCodes.inc file into the same directory. At the end of your P3.asm file
and just before the end assembler directive, add the line:

#include KeyCodes.inc

The assembler will use this to insert a 256-byte table into your code. When assembled, this file
will reside at the last 256 addresses of program memory before the addresses where QwikBug
resides. That is, it will range from 0x5f00 to 0x5fff. (QwikBug resides in addresses 0x6000 up
to Ox7ftt.)

ReadKeypad Subroutine

This subroutine sets the ADC to select the AN7/RE2 input from the keypad as well as a right-
justified result. Then it waits for 15us (see Figure 10-7) before initiating a conversion. When
the GO_DONE bit in the ADCONO register goes to zero, signaling the completion of the
conversion, just return.

Project Four Positioning System Page 1 of 2

ReadPot Subroutine Modification

Change this subroutine so as to first select the AN4/RAS input from the pot as well as a left-
justified result. Then wait for 15 ps before initiating a conversion. Upon the completion of the
conversion, copy ADRESH to POTVALUE and return.

Keypad Subroutine

This subroutine, called each time around the mainline loop, is to check for a new key pressed.
Call the ReadKeypad. Ifbit 0 of ADRESH is 1, then no key is pressed. Clear bits 0 and 1 of
FLAGS and return.

If bit 0 of ADRESH is 0 (indicating that a key is pressed) and if bits 1 and 0 of FLAGS are

- 00 (indicating that no key was pressed ten milliseconds ago) then just set bit 0 of
FLAGS and return. This will debounce the pressed keyswitch.

- 11 (indicating that the pressed key has already been acted upon) then return.

- 01 (indicating that a key was pressed for the first time ten milliseconds ago and that any
keybounce has settled out) then set bit 1 of FLAGS and copy ADRESL to TBLPTRL.
Load TBLPTRH with the value 0x5f. Use the tblrd* instruction to copy the ASCII
value of the key pressed into TABLAT. What happens next depends upon whether the
pressed key was a digit, an *, or a #.

- Ifit was an *, then store the ASCII code for a + sign (0x2b) in SIGN, add
NUMH:NUML to NUMSTPSH:NUMSTPSL and call a SendStrg subroutine to
send to the PC display <CR>, <LF>, SIGN, the digits in KEYSTRG, <CR>,
<LF>. In this string of characters, the <LF> is a “line feed” code and is coded as
Ox0a. Then call a ResetKeypad subroutine to clear NUMH:NUML, clear the
four bytes of KEYSTRG, and to reinitialize FSRO so that it points to
KEYSTRG.

- Ifit was a #, then store the ASCII code for a - sign (0x2d) in SIGN, subtract
NUMH:NUML from NUMSTPSH:NUMSTPSL, call SendStrg and call
ResetKeypad.

- Ifit was anything else (i.e., a digit)

- If NUMH is not zero, then call ResetKeypad to start over and fall
through to the following action:

- If NUMH is zero, then copy TABLAT into KEYSTRG using the
instruction movff TABLAT, POSTINCO0. Then convert TABLAT to
its digit value, multiply NUML by ten, copy the result into
NUMH:NUML and add TABLAT to it.

ControlStepping Subroutine Modification

For this project, NUMSTPSH:NUMSTPSL is a twos-complement-coded number representing
the number of steps still to be taken. Modify this ControlStepping subroutine so that no step is
taken if NUMSTPSH:NUMSTPSL equals zero. If NUMSTPSH:NUMSTPSL is positive, then
take a CW step and decrement NUMSTPSH:NUMSTPSL. If NUMSTPSH:NUMSTPSL is
negative, then take a CCW step and increment NUMSTPSH:NUMSTPSL.

Project Four Positioning System Page 2 of 2

	Page 1
	Page 2

