
Project Three Variable Stepping Rate Page 1 of 1

ECE 4175
Project Three
Variable Stepping Rate

Complete by: Reference:
Wednesday Jan. 25th for an A+ Chapter 14 Math Subroutines

Overview

For this project, you will modify the code for Project Two, using the number, 0 to 8, derived for Project Two
to produce nine discrete stepping rates of

0, 12, 24, 36, 48, 60, 72, 84, 96
steps/second. You will also display this rate on the PC monitor.

Rate Multiplier Algorithm

Each second when you form SMALLPOT, also multiply SMALLPOT (whose value ranges betwen 0 and 8)
by 12, putting the result into STEPRATE.

Each time around the mainline loop, call a ControlStepping subroutine. This subroutine is to
add STEPRATE to another one-byte RAM variable called ACCUM. If the result overflows and sets the
carry bit, then it steps the stepper motor one step and also subtracts one hundred from ACCUM. Then it
returns from the subroutine (whether or not the addition overflowed).

To see why this scheme works, note that if STEPRATE were equal to one, and if ACCUM had just
overflowed and had 100 subtracted from the result, it would now have 256-100 = 156 in it. Then during the
next 100 looptimes, ACCUM would be incremented up one count at a time to the point where the 100 time itth

would go from 255 back to 156 again and a single step would occur during these 100 looptimes (i.e., one step
in exactly one second).

As another example, if STEPRATE were equal to two (and starting from ACCUM = 156), during the next
100 looptimes a net total of 2x100 = 200 counts would be added to ACCUM, resulting in the overflow of
ACCUM twice and a final content of ACCUM of 156 again.

RateDisplay Subroutine

This subroutine, called only once a second after SMALLPOT and STEPRATE have been formed, is to
convert STEPRATE to two ASCII-coded digits and send them out to the PC monitor, preceded by the <CR>
carriage return code. Use the FXD0808U subroutine of Figure 14-4 to divide the value in STEPRATE by 10,
to break out the tens and units digits. To do this, follow the directions of Section 14.4. Once you have
executed the division subroutine, send the <CR> to the PC using the TXbyte subroutine. Then copy the
quotient in AARGB0 to WREG (using the movf) instruction and add 0x30 to it, to form its ASCII code
equivalent, and send this to the PC monitor. Finally, convert the remainder in REMB0 to its ASCII code
equivalent and send it. Then return.

Scope Display of Useful Work and Stepping Rate

In your mainline code at the beginning of the mainline loop (i.e., just after the LOOP_ construct), set RC2
(i.e., bit 2 of Port C). Then at end of the mainline loop, but just before the call of LoopTime, clear RC2. Note
that this pin is brought out on the header at the top of the QwikFlash board and that we can monitor how long
this pin is high to tell how long it takes to do useful stuff each time around the mainline loop.

Each time a step is taken, toggle RB1, which is also brought out on a pin located on the same header. We can
use this to monitor the stepping rate of the stepper motor since its frequency will be exactly half of the
stepping rate.

	Page 1

