
Project Two Display of Scaled Pot Value Page 1 of 2

ECE 4175
Project Two
Display of Scaled Pot Value

Complete by: Reference:
Wednesday Jan. 18 for an A+ Chapter 6 - Structured Assemblerth

Chapter 10 - ADC (just scan, for now)

Overview

For this project, the code for Project One should continue to work. In addition, you will cause
the PC’s monitor to update a single digit, 0-8, every second. The digit value is to be taken from
the potentiometer output, read by the analog-to-digital converter and scaled to this range.

You will also modify all of the code, old and new, to conform to the structured assembler
requirements of Chapter 6. When you are ready to assemble your new file, use

sasm P2
instead of

mpasmwin P2
This invokes Jess Meremonte Johnson’s structured assembler preprocessor to take the P2.asm
file and to replace all of the structured assembler constructs with conditional and unconditional
branch instructions in a file called P2.apr. Then this new file is subjected to the mpasmwin
assembler to produce the P2.hex file that will be downloaded to the QwikFlash board and run.

Modification of Project One Code for Structured Assembler Constructs

Modify the code for Project One, replacing each of the following with one of the structured
assembler constructs of Figure 6-1. Indent the code within each construct two spaces. For
examples, refer to Figure 6-7. Here is some of the code needing modifying:

- “Loop ... bra Loop” in the Mainline program
- “bnz BAend” in the BlinkAlive subroutine
- “btfss PIR1,TMR2IF” in the LoopTime subroutine

Test your modified code before going on to the next part of this project. For all of your new
code for the project, use the structured assembler constructs.

PotDisplay Subroutine

This subroutine, called each time around the mainline loop, decrements a one-byte variable,
HUNDRED. If the result is zero, it reloads HUNDRED with a value of 100 and calls a
ReadPot subroutine that converts the input from the potentiometer to the ADC’s AN4 input as
an eight-bit value and stores the result in a variable called POTVALUE. Then it multiplies
POTVALUE by 9 and takes the upper byte of the two byte product in PRODH:PRODL and
stores it in SMALLPOT. This value will range between 0 and 8. Finally, it calls the TXbyte
subroutine described below twice. The first call sends the ASCII code for a “carriage return”,
0x0d, to the PC. Then 0x30 is added to SMALLPOT and the result is put into W and this result
(which is the ASCII code for the value in SMALLPOT) is sent to the PC. Finally, it returns (to

Project Two Display of Scaled Pot Value Page 2 of 2

the mainline loop).

ReadPot Subroutine

The first two lines of the Initial subroutine have already been written to enable the analog-to-
digital converter, to select the pot input on AN4 (what would otherwise be bit 5 of PORTA), and
(when triggered to begin a conversion) to put the upper eight bits of the ten-bit converted value
into ADRESH. Accordingly, whenever a conversion is desired, just call the following
subroutine:

;;;;;;; ReadPot subroutine ;;;
;
; This subroutine reads the potentiometer and puts the upper byte into ADRESH.

ReadPot
bsf ADCON0,GO_DONE ;Initiate conversion
REPEAT_
UNTIL_ ADCON0,GO_DONE == 0 ;Wait for completion of conversion
return ;Return with result in ADRESH

TXbyte Subroutine

;;;;;;; TXbyte subroutine ;;
;
; This subroutine first waits on the UART if a byte is in the process of being
; sent. Then it sends the content of WREG to the PC.

TXbyte
REPEAT_ ;If an earlier transmission is still
UNTIL_ PIR1,TXIF == 1 ;in progress, then wait
movwf TXREG ;Send new byte from WREG
return

Indenting of Your Stuctured Assembly Code

From the same DOS prompt
 c:\Work>

used to assemble your code, use the “indent” feature of the structured assembler with the
command line:

sasm -tabs -noasm P2.asm
as described on page 75. Then replace P2.asm with the generated P2.apr file:

copy P2.apr P2.asm

QwikPH Utility

Use Chris Twigg’s QwikPH utility, described in Appendix Section A5.3, to update the program
hierarchy in your file.

Comment Updates

Update the name of this code to P2 on the line 1 comment of your source file, P2.asm.
Update the description of what your code does in the first few lines of your source file.
Be sure to comment your new code with a comment on almost every line plus a header comment
at the beginning of each new subroutine.

	Page 1
	Page 2

